Identification and characterization of small RNAs in Yersinia pestis

نویسندگان

  • Arthur Beauregard
  • Eric A. Smith
  • Brianna L. Petrone
  • Navjot Singh
  • Christopher Karch
  • Kathleen A. McDonough
  • Joseph T. Wade
چکیده

Yersinia pestis, the etiologic agent of plague, is closely related to Yersinia pseudotuberculosis evolutionarily but has a very different mode of infection. The RNA-binding regulatory protein, Hfq, mediates regulation by small RNAs (sRNAs) and is required for virulence of both Y. pestis and Y. pseudotuberculosis. Moreover, Hfq is required for growth of Y. pestis, but not Y. pseudotuberculosis, at 37°C. Together, these observations suggest that sRNAs play important roles in the virulence and survival of Y. pestis, and that regulation by sRNAs may account for some of the differences between Y. pestis and Y. pseudotuberculosis. We have used a deep sequencing approach to identify 31 sRNAs in Y. pestis. The majority of these sRNAs are not conserved outside the Yersiniae. Expression of the sRNAs was confirmed by Northern analysis and we developed deep sequencing approaches to map 5' and 3' ends of many sRNAs simultaneously. Expression of the majority of the sRNAs we identified is dependent upon Hfq. We also observed temperature-dependent effects on the expression of many sRNAs, and differences in expression patterns between Y. pestis and Y. pseudotuberculosis. Thus, our data suggest that regulation by sRNAs plays an important role in the lifestyle switch from flea to mammalian host, and that regulation by sRNAs may contribute to the phenotypic differences between Y. pestis and Y. pseudotuberculosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The importance of the small RNA chaperone Hfq for growth of epidemic Yersinia pestis, but not Yersinia pseudotuberculosis, with implications for plague biology.

Yersinia pestis, the etiologic agent of plague, has only recently evolved from Yersinia pseudotuberculosis. hfq deletion caused severe growth restriction at 37 degrees C in Y. pestis but not in Y. pseudotuberculosis. Strains from all epidemic plague biovars were similarly affected, implicating Hfq, and likely small RNAs (sRNAs), in the unique biology of the plague bacillus.

متن کامل

Simple and Rapid Detection of Yersinia Pestis and Francisella Tularensis using Multiplex-PCR

Background: Yersinia pestis and Francisella tularensis cause plague and tularemia, which are known as diseases of the newborn and elderly, respectively. Immunological and culture-based detection methods of these bacteria are time-consuming, costly, complicated and require advanced equipment. We aimed to design and synthesize a gene structure as positive control for molecular detection of these ...

متن کامل

Yersinia pestis and Yersinia pseudotuberculosis infection: a regulatory RNA perspective

Yersinia pestis, responsible for causing fulminant plague, has evolved clonally from the enteric pathogen, Y. pseudotuberculosis, which in contrast, causes a relatively benign enteric illness. An ~97% nucleotide identity over 75% of their shared protein coding genes is maintained between these two pathogens, leaving much conjecture regarding the molecular determinants responsible for producing ...

متن کامل

Intrinsic plasmids influence MicF-mediated translational repression of ompF in Yersinia pestis

Yersinia pestis, which is the causative agent of plague, has acquired exceptional pathogenicity potential during its evolution from Y. pseudotuberculosis. Two laterally acquired plasmids, namely, pMT1 and pPCP1, are specific to Y. pestis and are critical for pathogenesis and flea transmission. Small regulatory RNAs (sRNAs) commonly function as regulators of gene expression in bacteria. MicF, is...

متن کامل

Genome-wide analysis of small RNAs expressed by Yersinia pestis identifies a regulator of the Yop-Ysc type III secretion system.

Small noncoding RNA (sRNA) molecules are integral components of the regulatory machinery for many bacterial species and are known to posttranscriptionally regulate metabolic and stress-response pathways, quorum sensing, virulence factors, and more. The Yop-Ysc type III secretion system (T3SS) is a critical virulence component for the pathogenic Yersinia species, and the regulation of this syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2013